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In this study involving advanced fluid flow codes, an incremental
iterative formulation (also known as the “delta’ or “correction’” form),
together with the well-known spatially split approximate factorization
algorithm, is presented for solving the very large sparse systems of
linear equations which are associated with aerodynamic sensitivity
analysis. For smaller 2D problems a direct method can be applied to
salve these linear equations in either the standard or the incremental
form, in which case the two are equivalent. lterative methods are
needed for targer 2D and future 3D applications, however, because
direct methods require much more computer memory than is currently
available. hterative methods for solving these equations in the standard
form are generally unsatisfactory due to a lack of diagonal dominance
and perhaps ill-conditioning of the coefficient matrix; this problem can
be overcome when these equations are cast in the incremental form.
These and other benelits are discussed herein. The methodology is
successfully implemented and tested in 20 using an upwind, cell-cen-
tered, finite volume formulation applied to the thin-layer Navier-Stokes
equations. Results are presented for two sample airfoil problems: (1)
subsonic low Reynolds number laminar flow; and (2) transonic high
Reynalds number turbulent flow,  © 1994 academic Press, Inc.

1. INTRODUCTION

For many complex flow fields of interest in practical
engineering problems, accurate delailed analyses are now
possible using supercomputers and advanced software;
these codes have been developed in recent years through an
intensive research effort focused in the discipline now
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known as computational fluid dynamics (CFD). For these
advanced CFD codes to become more useful as practical
design tools, additional software is needed which wilt
efficiently provide accurate aerodynamic sensitivity
derivatives which are consistent with the discrete flow solu-
tions of the particular CFD code of choice. The theme of
this study is the ongoing development of a methodology for
calculating these derivatives,

A sensitivity derivative is defined as the derivative of a
system response of interest {¢.g., the lift or drag of an airfoil)
with respect to an independent design variable of interest
(e.g., a parameter which controls the shape of an airfoil). In
a typical design environment, a very large number of-
analyses are often made in determining the “best” design.
An efficient method for calculating accurate sensitivity
derivatives can be applied in several different ways to
significantly reduce the number and/or computational cost
of these multiple analyses. This could be critical for the
integration of advanced CFD codes into a systematic design
methodology, where the computational cost of a single flow
analysis can be extremely high, particularly in 3D.

One method of a very general yet conceptually simple
nature for computing aerodynamic sensitivity derivatives is
the method of “brute-force™ finite diflerences. With this
method, assuming forward finite diflerence approximations
are used, the CFD flow analysis code is used to generate one
converged flow solution for a slightly perturbed value of
each design variable for which sensitivity derivatives are
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required. The principal drawback of this method is clearly
that of computational cost, since the number of flow
analyses required in a typical design problem can be
extremely (l.e., prohibitively) large, particularly when the
number of design variables is large.

As a typically less costly alternative to the finite difference
appreach, aerodynamic sensitivity derivatives can (in prin-
ciple) be computed by direct differentiation of the governing
equations which control the fluid flow. If the continuous
governing equations are differentiated prior to their numeri-
cal discretization, the method is known as the “continuum”
approach. In contrast, if the resulting algebraic equations
which model the governing equations are differentiated
foliowing their discretization, the method is known as the
“discrete” approach. In developing efficient methods for
computing these sensitivity derivatives and their subsequent
application to aerodynamic design problems, researchers
have been and remain active; Refs. [1-25] are a repre-
sentative {but not exhaustive) sample of papers which are
germane to the present effort. Reference [87] addresses the
distinction between the aforementioned “continuum™ and
“discrete” approaches, and Refs. [24, 257 are earlier studies
upon which the present effort is based.

The present study represents an extension of the recent
efforts of Refs. [13-23], where fundamental sensitivity
equations are derived by direct differentiation of the system
of discrete nonlinear algebraic equations which model either
the Euler or thin-layer Navier-Stokes (TE.NS) equations
for 2D steady fMow. This differentiation results in very large
systems of /inear algebraic sensitivity equations which must
be solved to obtain these derivatives of interest. In
Refs. [13-23], the fundamental sensitivity equations are
solved in what shall be referred to as the “standard” (ie.,
non-incremental) form. Furthermore, in these references, a
direct solver method is applied to solve these equations; the
single exception is Ref. [23], where a hybrid direct/iterative
approach is adopted for an isolated airfoil example
problem. There are some important advantages in using a
direct method when feasible; these are discussed in the
references and are also noted later in this article. However,
the most serious disadvantage of a direct method is the
extremely large computer storage requirement, which for
practical 3D problems appears to be well beyond the
current capacity of modern supercomputers; this capacity
can even be exceeded in 2D on computational grids
containing a large number of points.

In an effort to circumvent the computer storage limitation
for the direct methods, this study focuses on fundamental
algorithm development for the efficient iterative solution
of the aerodynamic sensitivity equations. The principal
motivation and objective is to develop a solid framework in
2D from which future extensions to 3D will be feasible. In
general, one of the most serious difficulties encountered in
the development and/or application of iterative techniques
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is lack of diagonal dominance and/or poor overall condi-
tioning in the coeflicient matrix. Unfortunately, this is a very
common occurrence in the CFD coefficient matrices of
interest; the severity varies greatly and depends on many
factors. This problem can manifest itself in either poor
performance or even complete failure (ie., divergence) of an
iterative algorithm.

A computationally useful property of the “incremental”
form (also commonly known as the “delta” or “correction”
form ) can be effectively exploited to combat these problems
of poor iterative algorithm performance. This property is
that “approximations of convenience” can be introduced
into the coefficient matrix operator of the equations,
without affecting the final converged values of the sensitivity
derivatives. The approximations must be “reasonable”
enough so that the resulting iterative strategy is convergent.
In contrast, if any approximations are made to the coef-
ficient matrix operator of the equations in the standard
form, then the computed sensitivity derivatives cannot be
consistent discrete forms; that is, they will not be the correct
derivatives of the nonlinear algebraic equations which are
solved when generating the steady-state flow solution. In
particular, it is proposed and successfully demonstrated
numerically, that the identical diagonally dominant
approximate coefficient matrix operator and algorithm,
commonly associated with implicit methods for solving the
nonlinear flow equations, can also be used to iteratively
solve {in incremental form] the consistent discrete systers
of linear equations for aerodynamic sensitivity analysis.

The remainder of this article is organized as follows. The
next section, presentation of theory, is further subdivided
into four subsections which review and discuss: (1)
governing equations, spatial discretization, and implicit
formulation; (2) fundamental aerodynamic sensitivity equa-
tions in standard form; (3} basic linear equation solving in
incremental form; and (4} incremental solution of the equa-
tions of aerodynamic sensitivity analysis. In this last subsec-
tion, some significant implications of the incremental
formulation are compared to the standard form. Following
the presentation of theory section, computational results are
presented which illustrate application of the methodology
to two example airfoil problems: (1) subsonic low Reynolds
number Jaminar flow; and (2) transonic high Reynolds
number turbulent flow. The final section is a summary
where conclusions are given.

2. PRESENTATION OF THEORY

2.1. Governing Equations, Spatial Discretization, and
Implicit Formulation

The governing equations considered are the 2D thin-layer
Navier-Stokes equations, which are solved numerically in
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integral conservation law form using an implicit upwind
cell-centered finite volume formulation [26, 27]. Higher-
order accurate approximate representation of the convec-
tive and pressure terms is accomplished using the popular
flux-vector splitting upwind formulation of van Leer [28],
and the thin-layer viscous terms are modeled using central
“differences.” At steady state, this discretization of the
governing equations over the domain including the numeri-
cal boundary conditions is expressed as

{R(Q*)}={0}, (1)

where Eq. (1) represents a large system of coupled nonlinear
algebraic equations and the “root,” {Q*}, is the steady-
state numerical solution for the field variables. In this
equation and subsequently, the notation, “{ }”, indicates a
global cotumn vector.

The well-known Newton linearized “incremental”
strategy can in principle be applied to the root-finding
problem in solving Eq. (1). Strict application of Newton's
method, including consistent treatment of the boundary
conditions, generally results in very large error reductions
per iteration; quadratic convergence is achieved when the
transient solution enters the range of attraction to the root
{29,30]. Newton’s method presently appears infeasible
for application to practical 3D problems because of the
excessive computer storage which is required for a direct
solution of the linear problem at each Newton iteration.
While feasible in 2D, studies have also shown the direct
Newton’s method to be not necessarily the most efficient
method with respect to overall CPU time, despite the large
error reductions per iteration which are realized [297. More
commonly, therefore, CFD software has resorted to the use
of iterqtive methods to solve these equations.

Implicit iterative methods for solving the Navier-Stokes
equations are related to Newton’s method and are
represented here as

-| 2 et - (@) @
{0 ={0"}+ {40} 3)

n=1,2,13, .

where “n” is an iteration index, and {"4Q} is the incremen-
tal change in the ficld variables from the present “known”
{nth) iteration to the next {mth + 1)iteration level. An
initial guess, { @'}, is required to initiate this iterative proce-
dure, which in the present study is the freestream. The left-
hand side coefficient matrix operator, — [dR"(@)/¢Q],
approximates the truc Newton left-hand side coefficient
Jacobian matrix operator. Typically the differences between
the truec Newton coefficient matrix operator and the
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approximate coefficient matrix operator and the
approximate coeflicient matrix operator of Eq. (2) include,
but are not limited to,

(1) A “time-step” term is included {i.e., added) and thus
significantly enhances each diagonal element of the coef-

ficient matrix, — [OR"(Q2)/2Q], of Eq. (2). This is equivalent
to the inclusion of under-relaxation in the true Newton's
method, and under certain restrictions, can make the
iterative procedure of Eqs. {2) and (3) “time-accurate.”

(2) Simplifying linearization errors of various types are
included in the construction of the approximate operator,

—[8R™(@)/éQ]. For example, consistent boundary condi-
tion linearization is typically neglected, and/or a first-order
accurate upwind treatment of the inviscid terms might be
used in this matrix operator, despite the higher-order
accurate treatment of these terms in the vector {R"(Q)}} on
the right-hand side of the equations,

(3) Additional “approximations of convenience” are
included in the matrix operator in order that a very efficient
{in terms of computational work and computer storage)
approximate solution of the linear problem can be generated
at each iteration on the nonlinear problem. For example,
with the popular spatially split approximate factorization
(AF) method of Ref [31], an approximate solution of
Eq. (2) is produced at each nth iteration using alternating
direction sweeps which involve the solution of a series of
uncoupled sub-systems of block-tridiagonal linear equa-
tions in each sweep direction. It is this algorithm which is
selected for use in the example problems of the present
study. Additional well-known “iterative” algorithms which
have been applied in solving the Navicr-Stokes equations
include (but are not limited to) LU (lower/upper)
approximate factorizations [32], conventional relaxation
methods [33], strongly implicit methods [34], and
preconditioned conjugate gradient methods [ 35, 36]).

Of course, these approximations result in far less crror
reduction per iteration than can be achieved with a faithful
implementation of Newton’s method; a converged
steady-state solution generally requires hundreds or even
thousands of iterations to achieve using the iterative
methods. Because Eq. (2) is in incremental or “delta” form,
however, at convergence the steady-state solution, {Q*}, is
independent of any and all approximations which are used
in the left-hand side coefficient matrix operator.

2.2. Fundamental Aerodynamic Sensitivity Equations in
Standard Form

In general, the jth aerodynamic system response, C;, is
functionally dependent on the steady-state field variables,
{Q*}; the vector of computational grid (x,y) coor-



AERODYNAMIC SENSITIVITY DERIVATIVES

dinates, { X'}; and perhaps also explicitly on the vector of
independent design variables, §. That is,

C;=C,(2*(B). %), ). (4

—

The sensitivity derivative of C; with respect to the kth
design variable, §, (i.e., the kth clement of 1}, is thus

.~ {ae) (a5 (i

where superscript “T” denotes transpose.

The notation for a total derivative has been used on the
left-hand side of Eq. (5) to indicate that the total rate of
change of C, with respect to fi, is included in the term and
to distinguish it from the partial derivative on the right-
hand side of the equation. Nevertheless, dC,/df, is a partial
derivative in the sense that C, is in general a function of mul-
tiple independent design variables, 8, as seen in Eq. (4). In
Eq. (5), the term {dX/dB,}, known as the grid sensitivity
vector, can be evaluated using any of several methods which
have been suggested [23, 37, 38]; the strategy of Ref. [23]
was selected in the present study. Another method, of
course, would be to use the grid generation program to
obtain “brute-force” finite differences lor evaluating these
terms. The grid sensitivity vector is null if the design
variable, ff,, is not related to the geometric shape of the
domain. The vector {dQ*/df,}, which is the sensitivity of
the steady-state field variables with respect to the & th design
variable, is evaluated for use in Eq. (5) by solving a large
system of coupled linear sensitivity equations which is
derived subsequently.

The large system of coupled nonlinear algebraic equa-
tions which model the flow, given previously by Eq. (1), can
be expressed in general as

{5)

{R(Q*(B), X(B), B, C,)} = {0}, (6)

where now, the dependence of these equations on the grid,
{ X}, and on the design variables, f§, is noted. In addition,
Eq. (6) includes the possibility of an explicit dependence on
the steady-state lift coefficient, C, . This explicit dependence
is found in the far-field boundary conditions of an isolated
lifting airfoil when the accurate “lift-corrected” far-field
boundary conditions of Ref. [39] have been used, as in the
example problems of this study. Note that C, itself depends
on the field variables, {Q*}; the grid, {X}; and possibly
explicitly on the design variables, f; in the manner expressed
by Eq. (4). The explicit dependence on C; noted in Eq. (6)
might therefore appear redundant; however, the computa-
tional advantages of this particular grouping of terms is dis-
cussed in detail in Ref. [23] and will become apparent.

339

Differentiation of Eq. {6} with respect to j; yields
(Lot + s )+ {5
df oQ | dp: ax I dp. 0

dR ) dC,

+{ae,) a5 10 @)
where in Eq. (6) the term dC, jdf, is evaluated using a rela-
tionship of the form given by Eq. (5). Note that the vector
{8R/8C, )} is very sparse; nonzero contributions to it arise
only from the “lift-corrected” far-field boundary condition
equations. Equation (7) is thus a large system of coupled
linear equations which in principle can be solved for the
unknown vector, {dQ*/df,}, one such solution for each
design variable, f,. This method is known as the quasi-
analytical method for computing sensitivity derivatives.

The matrix [8R/éQ ] of Eq. (7) is the Jacobian of the non-
linear flow equations (cvaluated at steady-state) with
respect to the field variables and includes consistent treat-
ment of ail boundary conditions; an exception is that
contribution resulting from the explicit dependence of the
lift-corrected far-field boundary condtions on C, . Substitu-
tion of Eq. (5) for dC,/df, into Eq. (7) reveals that this
contribution to [dR/6Q] is given by the very sparse matrix,
{R/3C, }{8C, /6Q}T. The matrix [GR/GX] of Eq.(7) is
the Jacobian of the flow equations (evaluated at the steady
state and including all boundary conditions) with respect to
the grid coordinates [17, 18]; again the exception is the
contribution from the explicit dependence of the far-field
boundary conditions on C, . Here this contribution is given
by the very sparse matrix {8R/3C, }{0C,/8X} . The vector
{6R/0B,} of Eq. (7) accounts for explicit dependencies (if
any) of the flow equations, including boundary conditions,
on f§.; the contribution to this vector from the C,
dependence of the far-field boundary conditions is given by
the vector {8R/8C }OC, /aB,).

A well-known closely related alternative strategy for com-
puting sensitivity derivatives, known as the adjoint variable
methad, is easily developed using expressions which have
been presented thus far. This begins by combining Eqgs. (5)
and (7) to yield

aC;

.~ {aof (i) o) {5
e ([l [ i)
REACAY Y,

The adjoint variable vector, {4,}, is arbitrary at this point,
since the inner product of {4;} is taken with the mull vector,

(8)
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from Eq. (7). Thus there is no net change from Eq. {5) to
Eq. {8) since the entire additional term on the right-hand
side of Eq. (8) is zero, for any and all {4,}. Expanding and
rearranging, Eq. {8) becomes

ac;

j—gj=({%%}T+{%} [GRD{;;?} B,
A G e )
({58} [t

The necessity of evaluating the vector, {dQ*/df,}. using
Eq. (7) is eliminated for all 8, by selecting the vector, {4},
such that the coefficient of {dQ*/df,} in Eq.(9) is null.
That is, selection of {4} which satisfies

28] 1+

Therefore, following the solution of Eq.(11) for this
particular choice of the adjoint variable vector, {4},
the sensitivity derivatives of C, with respect to all §, are
computed by

C,

a5 o G &

O {0 (e

Note that Eq.(12) can be solved for 4C,/df, only if
dC jdB, is known or if C;=C,. Therefore, when the lifi-
corrected far-field boundary conditions are treated in the
manner described, then dC /dff, must be the first sensitivity
derivative which is calculated (for any and all §, of con-
cern), regardless of whether the sensitivity of C, is of actual
interest. (Normally, of course, the sensitivity derivatives of
C,; will be of interest in a typical problem.) A particular
solution, {4;}, is valid oniy for a specific system response,
C,, and thus solution of Eq. (11} must be repeated for each
different system response of interest.

It is simple to verify from the preceding equations, and
significant to note, that each solution, {dQ*/df, }, of Eq. (7)
for a particular design variable can be used for an unlimited

(9)

(10)

or

{11)

(12)
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number of different system responses. In constrast, however,
each solution, {4;}, of Eq. (11} for a particular system
response can be used for an unlimited number of different
design variables. Therefore, the total number of large lincar
systems which must be solved for a particular problem can
be minimized through a judicious selection of one of these
two methods, depending on whether the number of system
responses of interest or the number of design variables of
interest is larger.

In terms of computational efficiency, the significance of
the well-known diflerence in the two methods is mitigated
greatly if a direct method 1s used to solve these linear
systems (i.e., either Eq. (7) or Eq. (11})), because with either
methoed the LU factorization must only be done once and it
is then repeatedly reused for multiple right-hand side vec-
tors. However, this distinction can become very important
if an iterative strategy is used to solve these linear systems,
particularly if the difference between the number of design
variables and the number of system responses of interest is
very large. Despite this difference, it is emphasized that these
two methods are equivalent in the sense that they yield
identical values for the sensitivity derivatives, if properly
implemented computationally.

Summarizing briefly, it has been shown that calculating
aerodynamic sensitivity derivatives using the discrete direct
differentiation method requires the direct or iterative solu-
tion of large linear systems of equations of the type given by
either Eq. (7) or Eq. (11). These two systems of linear equa-
tions are referred to as the aerodynamic sensitivity equations
in standard form. Fundamental algorithm development for
the solution of one of these two linear systems is easily
extended and applied to the other, since their respective
coefficient matrices, [@R/0Q] and [dR/GQ]", are trans-
poses of each other. When the standard form equations are
solved, no approximations can be introduced into any of the
terms, without simultaneousiy introducing error into the
resulting sensitivity derivatives. In this form, the framework
to support the development of iterative methods is thus
rigid and restrictive.

As a consequence of the preceding discussion, given the
choice of a higher-order accurate upwind approximation for
the spatial discretization for the flow analysis, a consistent
higher-order accurate upwind spatial discretization
including a fully consistent treatment of ail boundary
conditions is required in the coefficient matrix operator of
the sensitivity equations (in standard form). Furthermore,
there can be no “time term” added here to enhance each ele-
ment of the diagonal, as is used (in contrast) in the implicit
formulation of Eq. (2} for solving the nonlinear flow equa-
tions. Unfortunately, the resulting coefficient matrix (either
[8R/3Q 7 or [dR/Q]1") of the linear sensitivity equations in
standard form in this case is not biock-diagonally dominant
[33], and consequently the computational performance of
traditional iterative methods for solving these equations in
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this standard form is expected to be poor, or even to fail
{23]. Therefore, it is this particular difficulty (i.e., the lack
of sufficient diagonal dominance) and its resolution which is
of principal concern in the development of the incremental
form of the equations in the following sections.

2.3. Busic Linear Equation Solving in Incremental Form

Consider the linear system of algebraic equations in the
general form

[41{Z*} + {B} = {0}, (13)

where {Z*} is the solution vector. In treating the problem
of solving Eq. (13), in essence a “root finding” problem,
application of Newton's method (traditionally used in root
finding for nonlinear equations) to the linear problem yields
the basic two-step iterative incremental formulation

—[A{"4Z}=[4{Z"} + {B}
{(zmr Yy ={zZm} + {maZ}
m=1,23, ..,

(14)
(15)

Y1}

where “m” is an iteration index, and {"4Z} is the incremen-
tal change in the solution from the known (mth) to the next
{(mth + 1) iteration level. An initial guess, {Z'}, is required
to begin the procedure, which in the present study is taken
everywhere as zero. If Newton’s method is applied strictly,
the coefficient matrix [A] is equal to the matrix [ A7, and
clearly the two-step iterative strategy of Eqs. (14} and (15)
for the linear problem converges on the first iteration, for
any initial guess. Therefore, in this case, solution of the
linear system in the standard form (Eq. (13)) and solution
in the incremental form (Eqs. {14) and (15)) are equivalent.

More generally, however, the matrix [A] is not
necessarily equal to the matrix [ 4], The matrix [ 4] can be
any convenient approximation of the matrix [4] with the
restriction that [ 4] must approximate [ 4] well enough so
that the two-step iterative procedure (Eqgs. (14) and (15))
converges (or, at the very least, can be forced to converge by
including a strategy such as under-relaxation). Simply
stated, [A] should capture the essence of [A4]. Further-
more, because the equations have been cast in “delta” form,
the incremental method produces the unique solution of
Eq.(13), {Z*}, if convergent. In this formulation, the
purpose of the left-hand side operator is to drive the right-
hand side vector to zero.

2.4. Incremental Solution of the Equations of Aerodynamic
Sensitivity Analysis

Application of the fundamental incremental formulation
for linear equation solving, Egs. (14) and (15}, to the linear
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system of Eq. (7) (i.e., the quasi-analytical method) for
computing aerodynamic sensitivity derivatives, gives

[l et () 6
{d%;: }‘ - {ngm} + {”’f’ 3,,%} (17)
m=1,2173, ..,
where
{art~ ol 53
A et )

I0;_[OCT (o) G (R} G,
dfi, oQ af ox dfi} OB’
where the left-hand side coefficient matrix operator

[éR/6Q] approximates the matrix [dR/2Q] and will be
discussed subsequently, in greater detail. The vector
{dR™/df,} represents the mth iteration on the rotal
derivative of the discrete steady-state nonlinear flow equa-
tions, Eq. (6), with respect to fi,. From Eq. (7), clearly this
vector must be driven to zero in order to find the solution,
{dQ*/dB,}, of Eq.(7), which is of course the objective of
the incremental strategy of Egs. (16), (17), and (I8).
Approximations must #ot be made to any terms of the
vector, {dR™/dp, }, taking particular care that a consistent
treatment of all boundary conditions is included, if the con-
verged solution is to yield the correct, consistent, discrete
sensitivity derivatives. The final solution at convergence
depends only on the terms of this right-hand side vector.

It is proposed that the identical approximate left-hand

side coefficient matrix operator [dR/@Q] and algorithm
which are used in solving Eq. (2) for the flow variables also
be used (when evaluated at the steady state) as the
approximate left-hand side operator and algorithm which
are used in solving Eq. (16) for the flow sensitivities. That is,
a first-order accurate upwind spatial discretization of the
inviscid terms is used in this operator as an approximation
here to the higher-order accurate upwind discretization of
these terms. It is most significant to note that by design
in this choice, block-diagonal dominance is now obtained
and maintained in the left-hand side coefficient matrix. In
addition, a false “time term” is included (ie., added) so

each diagonal element of the matrix, [OR/2Q], is further
enhanced; this i1s equivalent to under-relaxation in the incre-
mental strategy of Eqs. (16), (17), and (18). The boundary
conditions are not linearized in a fully consistent manner in
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this approximate matrix operator; far off-diagonal con-
tributions from the “periodic” boundary conditions which
arise when calculations are performed on a *C” or “O”
mesh are neglected. However, these “periodic” boundary
conditions cause special computational difficulties for the
standard form equations which require a consistent treat-
ment in the left-hand side matrix operator [23, 25).
Finaily, the well-known spatially split approximate factor-
ization (AF) algorithm [31] (also used here in solving the
nonlinear flow equations) is used to solve Eq. (16)
(approximately) at each mth iteration. If the resulting
block-tridiagonal coeflicient matrices are stored over the
entire domain, only a single LU factorization of each
of them is required, which can be repeatedly reused for
all iterations and all design varighbles, this strategy is
implemented in the large 2D example problems which are
presented.

If the adjoint variable formulation for computing the
sensitivity derivatives is preferred, then application of
the incremental formulation for linear eguation solving,
Egs. (14) and (15), to the linear system of Eq.(11) for
computing the adjoint variable vector, {4}, yields

R AR . fac,
| =] en+ {3 o
LAty = (A7) 4 {74} (20)
m=1,23, ..

For application in Eq. (19), it is straightforward to trans-
pose the approximate left-hand side coefficient matrix
operator and algorithm which were described previously for
use in Eq. (16). Again, only a single LU factorization of the
globally stored block-tridiagonal coefficient matrices is
required.

3. COMPUTATIONAL RESULTS

3.1, Subsonic Airfoil, Low Reynolds Number Laminar Flow

The first example problem is subsonic low Reynolds num-
ber constant viscosity laminar flow over a NACA 1406
airfoil. Flow is considered at a freestream Mach number,
M, =0.6, angle of attack, @ = 1.0°, and Reynolds number,
RE=50x10° A computational grid, a “C” mesh, of
257 x 65 points is used, with the “lift-corrected” far-field
boundary placed five chords from the airfoil; points are
clustered near the airfoil surface to assist with the resolution
of gradients in this vicinity. The spatially split AF algornithm
is used to achieve the converged (ie., the average global
error is reduced to machine-zero) steady-state solution,
{@*}, to the discrete nonlinear flow equations, Eq. (1).
Figure 1 is a plot of the computed steady-state pressure
coefficient, C,, on the surface of the airfoil. The computed
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FIG. 1. Chordwise distribution of surface pressure coeflicient, NACA
1406 airfoil, M =06, angle of attack, o= 1.0°, and Reynolds number,
RE = 5.0 % 10, laminar flow.

lift, drag, and pitching moment coefficients obtained are
C,=0.18148, €, = 041703 E-0l, and C,, = —0.23718 B-01.

Sensitivity derivatives of C,, Cp, and C,, are computed
with respect to six independent design variables: (1) airfoil
maximum thickness, T; (2) airfoil maximum camber, C; (3)
location of maximum camber, L; (4) angle of attack, x; (5)
freestream Mach number, M, ; and (6) Reynolds number,
RE. The three geometric shape related design variables
(7, C, and L) are parameters which together with well-
known analytical expressions (given, for example, in
Refs. [2 or 23]} define the “x” and “}” coordinates on the
surface (and hence the shape} of the NACA 4-digit airfoil.
Sensitivity derivatives are computed using three methods:
(1) the quasi-analytical method; (2} the adjoint variable
method; and (3) the “brute force” finite difference method.
Application of these three methods is described subse-
quently in greater detail; computational result comparisons
are summarized in Tablel. For the quasi-analytical and
adjoint variable methods, it is noted that the direct solver
approach was abandoned, because for this large computa-
tional grid the conventional (“in-core” storage) banded
matrix solver algorithm exceeded the maximum 40
megaword storage computer facility restriction.

For the quasi-analytical method, sensitivity derivatives
are calculated through the iterative solution of the
incremental form (i.e., Egs. (16), (17), and (18)) of six large
systems of linear equations, one such linear system for each
of the six design variables considered here. The well-known
spatially split AF algorithm [31] is used, with a constant
Courant number of 45 (i.e., local time-stepping is used),
which is found by numerical experimentation to be about
the optimum for computational efficiency in this example
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Summary of the Computational Results for the NACA 1406 Airfoil: Subsonic Laminar Low Reynolds Number Example Problem

: . . . daCcy dCp dC
Solution method Total CPU time (s)* Design variable 8, — — —
‘ dp df df
Quasi- 458
analytical T —1.392 E+ 00 +2019E-~-01 +1.805 E—01
method, C +6.583 E +00 +7583 E—02 —2240 E +00
approximately L —1154E-02 +5544 E~05 -2122E-02
factored o +6.122E+00 +%.181 E—-02 —3.168E—02
incremental M, +5428 E-03 +1.628 E—02 —4732E-03
scheme RE +5958 E—06 —4912E—-06 —6.564 E—07
Adjoint 579
variable T —1392E+00 +209E--01 +1.805 E—01
method, C +6.583 E+00 +7.583E-02 —2240 E+00
approxitnately L —1.154E—-02 + 5544 E~05 —2122E-02
factored a +6.122E+00 +9.181 E--02 —~3168 E—02
incremental M, +5428 E—03 +1.628 E—02 —4732E-03
scheme RE +5958 E—06 —4912E-06 —6.564 E — 07
“Brute force” 7404 T —1.392E +00 +20I9E--01 +1.805E—01
finite C +6.583E+00 +7583E—-02 —2240E+00
difference L —1.154 E 02 +5548 E-—05 —2122E-02
method o +6.122E+00 +9.181 E-02 —3168E—-02
M, +5426 E-03 +1628E—02 —4732E-03
RE +5958 E—-06 —49312E-06 —6.564 E —07

7 All calculations performed on a Cray-2 computer,

problem. An eight order-of-magnitude reduction in the
average global error is the specified convergence criterion in
solving each of these six lingar systems; an average of
683 iterations is required in each case to achieve this
convergence criterion.

For the adjoint variable method, sensitivity derivatives
are calculated through the iterative solution of the
incremental form (ie., Eqs. (19) and (20)) of three large
systems of linear equations, one such linear system for each
of the three system responses considered here. Again the AF
algorithm is used, and a constant Courant number of 45 is
found to be about the optimum. An average of 1743 itera-
tions is required to achieve an eight order-of-magnitude
average global error reduction, the required convergence
criterion for each of these three linear system solutions.

In application of the “brute-force” finite difference
method, central finite differences are used, with a forward
and backward perturbation of each design variable,
48, = +50E—0.6 x §,. Machine-zero converged steady-
state solutions of the discrete nonlinear flow equations are
obtained for each forward and backward perturbation of
each design variable; thus for six design variables, a total of
12 solutions to the nonlinear flow equatiens are produced.
The AF algorithm is again used to solve the flow equations;
in order to reduce computational work during these solu-
tions, the LU factored block-tridiagonal systems are stored

over the domain and are repeatedly reused for 10 iterations
prior to each re-evalution of these terms. (See Ref. [40] for
additional details concerning this strategy; there it was
shown via numerical studies to be near optimum, )

In comparing the sensitivity derivatives calculated using
the quasi-analytical method with the adjoint variable
method, the results are seen to agree, as expected. Unexpec-
tedly, however, the computational work required by the lat-
ter method (where a total of three linear systems are solved)
is seen to exceed that of the former (where a total of six
linear systems are solved); the convergence rates obtained
with the latter method were significantly slower than those
for the former method in this particular example problem.
In comparing the sensitivity derivatives calculated using the
method of finite differences with the other two methods,
excellent agreement is obtained, as expected. The “brute-
force” finite difference method is seen to be very much more
costly computationally than either the quasi-analytical or
adjoint variable methods.

3.2, Transonic Airfoil, High Reynoids Number Turbulent
Flow

The second example problem is transonic high Reynolds
number turbulent flow over a NACA 1406 airfoil. The varia-
tion of the molecular viscosity with temperature is com-
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puted using Sutherland’s law, and turbulence is simulated
using the well-known algebraic model of Baldwin and
Lomax [417]. Flow is considered at a freestream Mach num-
ber, M, = 0.8, angle of attack, « = 1.0°, and Reynolds num-
ber, RE = 5.0 x 10%. A “C” mesh with 257 x 65 grid points is
again used with the “hft-corrected” far-field boundary
placed five chords from the airfoil; clustering of points near
the surface is tighter in the present exampie than in the pre-
vious example because of the higher Reynolds number. The
spatially split AF algorithm is used to achieve a machine-
zero converged steady-state solution. Figure 2 is a plot of
the computed steady-state pressure coefficient, C,, on the
surface of the airfoil, and Fig. 3 1s a complete contour plot
of the static pressure, which clearly shows the presence of
a shock wave on the suction surface of the airfoil. The
computed lift, drag, and pitching moment coefficients are
C, =041662, C,=077501 E-02, and C,,= —0.45633 E-01,

Sensitivity derivatives of C,, C,, and C,, are computed
with respect to the same six independent design variables
previously considered. The quasi-analytical, the adjoint
variable, and the “brute-force” finite difference methods are
also applied in computing these sensitivity derivatives.
However, for the quasi-analytical and adjoint variable
methods, the approximation of neglecting the variation of
the laminar and turbulent viscosities with respect to the ficld
variables, {Q*}, and the computational grid, { X'}, is made.
That is, in the analytical construction of all the derivatives
(including the Jacobian matrices, [dR/GQ] and [OR/0X])
which are used to calculate the sensitivity derivatives, the
approximation is made that both laminar and turbulent
viscosities are constant. For this reason, the quasi-analytical
or the adjoint variable methods cannot give sensitivity
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FIG. 2. Chordwise distribution of surface pressure coefficient, NACA
1406 airfoil, M, =038, angle of atack, & =1.0°, and Reynolds number,
RE = 5.0 x 10°, turbulent flow.
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FIG. 3. Static pressure contour plot, NACA 1406 airfoil, M_, =0.8,
angle of attack, ¢ =1.0°, and Reynolds number, RE = 5.0 x 10°, turbulent
flow.

derivatives which are exactly consistent discrete forms; the
results from the “brute-force” finite difference procedure are
thus considered to be more accurate in this example. This
approximation is used, of course, because of the great com-
plexity involved in consistently treating the derivatives of
the turbulent viscosity; in fact, a fully consistent treatment
of these terms is not possible at points where this turbulence
model is not continuously differentiable. Application of the
three methods is described subsequently in greater detail;
computational result comparisons are summarized in
Table IL

For the quasi-analytical and adjoint variable methods,
the sensitivity derivatives are computed using the spatially
split AF algorithm to iteratively solve in incremental form
the required linear systems which have been described. With
both methods, a constant Courant number of 30 is used
{approximately the optimum value, as determined numeri-
cally); in all cases an eight order-of-magnitude reduction
in the average global error is the convergence criterion
enforced. For the quasi-analytical method, an average of
1619 iterations is needed to achieve convergence; for the
adjoint variable method, an average of 1798 iterations is
required. Finally, the “brute force” finite difference method

is applied here in a manner identical to that described in the

previous example problem.

In comparing the sensitivity denivatives calculated using
the quasi-analytical method with the adjoint variable
method, the results are seen to agree, as expected. In addi-
tion, it is noted that the total computational cost of the for-
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Summary of the Computational Results for the NACA 1406 Airfoil: Transonic Turbulent High Reynolds Number Example Problem

Solution method Total CPU time (s)* Design vanable §, ErC—_L d-ﬁCTD EC—_M
a8 df df
Quasi- 1052
analytical T +2275E-0 +2654 E—01 —3.124 E—01
method, C +1942E +01 +6511 E—-0) ~5516E+ 0D
approximately L +13E-01 —1.151E—-02 - 5589 E—02
factored a +1.198 E+ 01 +4.200 E—-01 —4675E-01
mcremental M, + 1772 E+ 00 +1921 E—0G1 ~ 5430 E -0t
scheme RE +4145E—09 —4881E—10 ~4397E—10
Adjoint 586
variable T +2275E-01 +2654 E—01 ~3124E-01
method, C +1942 E 401 +6511 E-01 ~5516 E +00
approximately L +1338E-01 —1.151E-02 —5589 E—(2
factored b +1LI98 E+01 +4200 E—01 —4675E—01
incremental M + 1772 E+00 +1921E—10 ~5430E —0]
scheme RE +4.145E—-09 —4881 E—10 ~4397E—10
“Brute force” 8526 T +7919 E—01 +2.744 E—01 —4.153 E—-01
finite C +2.063 E +01 +6776 E—01 —5770E +00
difference L +1.107E—01 —1.174E-02 —5350E-02
method o +1.299 E +01 +4346 E—01 —6328E—01
M, +2.040 E+ 00 +1969E—-D —5972E-01
RE —1.185E—09 —2829E—-10 +1497E— 10

2 All calculations performed on a Cray-2 computer.

mer method is approximately twice the cost of the latter, as
expected (since in the former method six linear systems are
solved compared to only three in the latter method, and the
average number of iterations is comparable). In comparing
the sensitivity derivatives calculated using the method of
finite differences with the other two methods, there is some
discrepancy in the results, as expected, because of the
neglected consistent treatment of the viscosity. For the most
part, the agreement between these calculated derivatives is
good. The most significant discrepancy is noted in the sen-
sitivity derivatives of €, with respect to maximum airfoil
thickness, T, where the derivatives differ by a factor of about
three or four. However, this sensitivity derivative is smaller
in magnitude than the largest derivatives. As in the first
example problem, the “brute-force” finite difference method
is seen here to be very much more costly computationally
than either the quasi-analytical or adjoint variable methods.

4. SUMMARY AND CONCLUSIONS

An incremental strategy has been presented for iteratively
solving the very large systems of linear equations which are
associated with aerodynamic sensitivity derivatives for
advanced CFD codes. The method permits use of an
approximate left-hand side coefficient matrix operator of
convenience, which at convergence yields the consistent

discrete sensitivity derivatives of interest. In the present
research, it is shown that the identical left-hand side matrix
operator and well-known spatially split approximate
factorization algorithm used to solve the nonlinear flow
equations can also be successfully used to efficiently solve
the linear sensitivity equations. The procedures are
demonstrated on two example airfoil problems: subsonic
low Reynolds number laminar flow and transonic high
Reynolds number turbulent flow.
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